
iPhone Rootkit? There’s an App for that!

Eric Monti – Sr. Security Researcher

Copyright Trustwave 2010

$ id
uid=501(emonti) gid=501(emonti) groups=0(wheel),42(tw_spiderlabs),69(security_nerds)

Eric Monti
Senior Security Researcher
Trustwave - SpiderLabs Research

~15 years in the industry
Worn hats for everything from sysadmin to software engineering

Nowadays:
Interests mostly in vulnerability research and reverse engineering
Mobile device security is my latest obsession

Copyright Trustwave 2010

My Motivation

I am not a iPhone Jailbreak team member - Just an avid fan

JailbreakMe.com 2.0 Launched around August 2010
•  Whole security community got really intrigued
•  I’d been focused on product engineering for several months

−  Really enjoy it (not knocking it!!!) but sometimes I missed vulns

•  Pen-testers officially propose a weaponized exploit
−  “It’d be cool to demo an iPhone rootkit to clients”

•  !!! \o/ !!! Sounds fun!
•  Dropped everything. Started reverse engineering jailbreakme.com
•  Soon found myself experimenting with iPhone and App-Store backdoors

Copyright Trustwave 2010

Presentation Overview

Understanding Jailbreaks
•  Understand iOS security measures and challenges
•  See how JB teams apply attack patterns
•  Get some fun reversing in

… to leverage the same techniques for rootkit purposes
•  “Malicious” exploits - in the PoC sense
•  Rootkits - also in the PoC sense ... please don’t root my phone “for reals”

No 0-day, the “star” of the show isn’t even mine
•  The bug is old news since research began
•  Wasn’t found by me to begin with
•  Jailbreak team members are pretty rockstar!!!
•  This is one of those “process” presentations

This time out, I’m going into more post-exploitation and app reversing

iPhone/iOS Security Overview

Copyright Trustwave 2010

iOS Security From 1,000 Feet

Nutshell:
•  Bootloader verifies…
•  signed firmware verifies…
•  signed kernel verifies…
•  signed Applications installed from the app store

•  Apple signed everything!

Actually a pretty sound design (barring implementation problems)

Copyright Trustwave 2010

Architecture Overview

Applications Processor
•  ARM (6 or 7 depending on idevice/version)
•  XNU Based Kernel (like OS X-lite on ARM)
•  Implements Kernel and Application Signing from bootloader down.

Baseband Modem
•  Another ARM, handles GSM connectivity
•  Separated from App. Processor with its own RAM and FLASH
•  Mostly interesting to carrier unlocks, but not my rootkits (yet?)

Hardware Encryption Introduced in iPhone 3GS
•  Low-level data encryption on NAND storage –

−  Idea is that you drop the key, and FS can’t be read.
•  A silly feature, really:

−  ‘The remote wipe feature as well as ‘Find my iPhone’ can be disabled by
removing the iPhone's SIM card.’ – Jonathan Zdziarski

Copyright Trustwave 2010

OS Environment

Two partitions make up filesystem
•  Root partition at / (read-only from factory)

− Kernel, Base OS, Core APIs

•  User Partition at /private/var (read-write)
− All third party apps
− User data

Two users for pretty much everything
•  “root” - system services, kernel
•  “mobile” - apps and data running as you, the user
•  Basic Unix security model applies

System libraries and APIs approximate OS X / Darwin

Copyright Trustwave 2010

Application Security

Code signing
•  All exe’s from the AppStore must be signed by Apple
•  Signatures stored in mach-o header section
•  Check implemented in kernel as through an enhanced exec()

system call

Sandbox
•  Applications run as user “mobile”
•  Chroot sandbox (ostensibly) restricts apps to their own data
•  Can’t access the OS or other apps’ data
•  Entitlements also restrict some functionality

− Programs need special entitlements for things like debugging
− Entitlements are trivial to add, but during exploitation this factors in

Copyright Trustwave 2010

Reality

Apple’s .app authorization process is probably the biggest iOS
security feature

•  Private APIs are accessible but apps using them are usually rejected
•  So low-level functionality is almost all there, just not “approved of”

Meaning…
Exploit code running in signed apps or on jailbroken devices can still do lots of
interesting things. The system is pretty much a full XNU-based darwin
platform and entitlement restrictions leave us a lot of elbow room.

Apple “audits” every app in the store. Think they don’t miss bugs?

Jailbreaking Overview

Copyright Trustwave 2010

Jailbreak Landscape

Remote client-side exploits are few and far between
•  Highly valuable
•  Obviously more potential for abuse
•  Obviously more exciting for security research

Most jailbreaks exploit vulns in restore and FW updates over USB
•  Fertile territory for jailbreaks, JB nerds, and regular nerds to follow (like me)
•  Security impact for ‘evil maid’ style bad-guy attacks

Very impressive work is consistent from the JB community
•  It takes a real !$$-hole to taint their awesome efforts…
•  But this is just how I do adoration and idolization

Internets have loads of tech details for learning
•  Patience! Gotta wade through lots of Apple fanboi and tech writer blogs to

find the good stuff
•  JB teams have cool info on wikis, but it’s not always up to date
•  Github!!! Jailbreak-team stalker’s paradise!

Copyright Trustwave 2010

Jailbreakme.com A Thing to Behold…

Author: Comex backed up by other jailbreak team members

•  The actual exploit and jailbreak package dubbed “star”
•  Worked on every iDevice Apple made and across almost all modern

versions.
•  iPhone 4G out for just a month or so.

•  Jailbreak users had been waiting patiently and were not
disappointed

•  Released right after a crucial US legal decision on jailbreaking
•  It’s now officially legal in US. Prior status was fuzzy

•  Source for exploit released after Apple releases security fix (iOS 4.0.2)
•  See http://github.com/comex/star

•  Handled everything like pros
•  Implementation, to presentation, to disclosure, to the timing of the

release

Copyright Trustwave 2010

The What

Instant, convenient jail-breaking using nothing more than your phone’s
data connection and the built-in Safari web browser

•  No iPhone is safe. Guy walked into apple store and filmed himself
jailbreaking their floor model! Posts to You Tube, hilarity ensures

•  Actually the second published web-based jailbreakme.com exploit
•  First was a based on a libtiff vulnerability from Tavis Ormandy
•  Similar security analysis and exploitation undertaken for libtiff by

HD Moore/metasploit team and others

Copyright Trustwave 2010

What it looks like

Visit	 	
h'p://jailbreakme.com	

Star	 exploit	 execu9on	 Finished.	 Pre'y	 safe	 and	 easy!	

Note:	 If	 we	 want	 a	 “stealth	 jailbreak”,	 we	 need	 to	 do	 away	 with	 all	 these	 prompts.	

Copyright Trustwave 2010

The How

The “star” PDF Exploit – Code execution
•  Classic stack overflow
•  BoF in CoreGraphics CFF(Compact Font Format) handling long strings
•  Overwrites $pc (EIP for ARM)
•  Code still running as “mobile” at this point
•  Leverages IOSurface (IOKit) bug for privilege escalation and sandbox

escape

The IOKit Vulnerability – Priv. escalation / breaks out of the sandbox
•  Kernel integer overflow in handling of IOSurface properties
•  Calls setuid(0) making Safari and all its loaded exploit code run as root
•  Dominoes all fall down from there

The Jailbreak Phase – Setting up residence on the iDevice
•  Patches out restrictive kernel functionality
•  Installs a basic jailbreak filesystem along with Cydia (APT based package

manager)
•  “Polite” and clean - Even calls setuid(501) back to “mobile” once it’s finished.

Weaponizing

Copyright Trustwave 2010

Reversing the “star” Exploit (pre-source)

First few weeks, no source was released for JailbreakMe.com
•  I was curious and impatient. Wasn’t sure if comex would release
•  Began reversing the binaries within a few days of the JB release

−  Staring at strange hex-dumps and peeling the onion one layer at a time
−  Fun and soothing – Like catnip for my O.C.D.

Copyright Trustwave 2010

Patch Plan
Reversing the installui.dylib and wad.bin provided guidance.
To quickly turn around a weaponized jailbreak, we’d need to…

•  Patch out a “security” check comex had incorporated
•  The jailbreakme.com PDFs’ installui.dylib had code to ensure they’d been downloaded from

“jailbreakme.com”. I couldn’t leave that
•  Not sure what motivation Comex had for this

•  Patch out all the gui pop-ups
•  Didn’t want the victim to realized they were being ‘kitted
•  I hadn’t learned the wonders of usbmuxd and libimobiledevice for live syslog yet so I left a

single popup for debugging/troubleshooting
•  Would patch it out last

•  Prepare a modified wad.bin containing our “rootkit”
•  Started out just shooting for getting the actual jailbreak to download and install quietly from

a server I controlled

Copyright Trustwave 2010

“All for naught”?

Got it working. Super happy! Then it turned out to be a total
waste of time. Or was it?

•  Comex released the source about a week after I’d finished testing my
first PoC

 See: http://github.com/comex/star

•  No use crying over spilled code. Now we just fork and patch the
github project

 See: http://github.com/emonti/star

•  But I’d still had more fun the other way. My custom “star” reversing
tools for historic sake

 See: http://github.com/emonti/star_reversing_tools

Copyright Trustwave 2010

My “Big Fat Rootkit”… so far

Custom-written and patched 3rd party code for backdoors and kit

•  I call it “Fat” because it weighs in too large to be considerd “stealthy”

•  Userland rockin’ it like it’s 1990
•  Why not: Apple did most of the hard work hiding the underlying system for us

•  Includes lots of the jailbreak base, but no cydia or other obvious signs of entry
•  MobileSubstrate and other components turn out to be very handy (more later)

•  UDP knockd called “bindwatch” fakes its name on argv[0]
•  Knockd Spawns a bind shell called, wait for it …. “bindshell” also fakes argv[0]

•  Patched “veency” to stay under the hood
•  Nice opensource iPhone VNC server by saurik
•  Runs via a DYLIB in MobileSubstrate
•  Mostly just removed the GUI config plist from System Preferences
•  Coded a trivial CLI tool to strap and start veency via darwin notifications without the GUI

•  Developing some targeted backdoors for “interesting” App Store application classes
•  More on this later…

Rootkitting Demo

Copyright Trustwave 2010

Set-up

A vanilla un-jailbroken iPhone 3g running iOS 4.0.1

Copyright Trustwave 2010

So What Now?
Plenty of interesting locations to explore on a rooted iPhone filesystem

•  Emails
−  /var/mobile/Library/Mail/

•  “Protected Index”
−  (SQLite for message metadata)

•  “Envelope Index”
−  (SQLite for email folders metadata)

•  IMAP-victim@victimco.com@imapserver.victimco.com/
−  (mailbox for your IMAP accounts)

•  ExchangeActiveSyncXXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/
−  (mailbox for victim’s exchange GUID XX…)

•  …etc.
•  Voicemails

−  /var/mobile/Library/Voicemail/
•  voicemail.db

−  (SQLite for message metadata)

•  /var/mobile/Library/Voicemail/*.amr
−  (Audio – Download and open in Quicktime)

•  SMS Messages
−  /var/mobile/Library/SMS/

•  sms.db
−  (SQLite for message metadata)

•  Parts/…
−  (TXT msg’s and msg parts for MMS)

Copyright Trustwave 2010

Hardware: Mic and Audio

Audio recording apps are the “hello world” for the iPhone

Google Core Audio and AudioToolBox.framework

My first rootkit app was “playaudio”
First rootkit fart app… “playaudio fart.aif”

My second was “recordaudio”
Only slightly harder. Lots of tutorials.

Copyright Trustwave 2010

Hardware Capture: Location

•  CoreLocation is cool, but requires user approval for GPS location
−  Can hijack a process that already has approval
− … or go under the API layer that actually enforces approval
− … or … hack approval with a patch.
−  Investigating lower CoreLocation layers.

•  Poor-mans approach:
− Dump a recent LAT/LONG from the locationd cache file
−  Extracted from /var/root/Library/Caches/locationd/cache.plist

	 	 	 	 WifiLoca9onNearby	 =	 	 	 	 	 {	
	 	 	 	 	 	 	 	 Al9tude	 =	 0;	
	 	 	 	 	 	 	 	 HorizontalAccuracy	 =	 80;	
	 	 	 	 	 	 	 	 La$tude	 =	 "41.882041";	
	 	 	 	 	 	 	 	 Lifespan	 =	 144;	
	 	 	 	 	 	 	 	 Longitude	 =	 "-‐87.628489";	
	 	 	 	 	 	 	 	 Timestamp	 =	 "304907008.940135";	
	 	 	 	 	 	 	 	 Type	 =	 4;	
	 	 	 	 	 	 	 	 Ver9calAccuracy	 =	 "-‐1";	
	 	 	 	 };	

Copyright Trustwave 2010

Dumping Process Data
Several interesting persistent Apple processes running

•  For example: “dataaccessd” handles email connectivity
•  Memory regions with ‘rw’ set are more likely to be program data
•  0x100000 happened to be an interesting region in this case

iPhone:/var/mobile root# ps -hax |grep dataaccessd	
 38 ?? 0:05.33 /System/Library/PrivateFrameworks/DataAccess.framework/Support/dataaccessd	
...	
iPhone:var/mobile root# gdb --quiet --pid=38	
Attaching to process 38.	
Reading symbols for shared libraries . done	
Reading symbols for shared libraries .. done	
0x3404c658 in mach_msg_trap ()	
(gdb) info mach-regions	
Region from 0x0 to 0x1000 (---, max ---; copy, private, not-reserved)	
 ... from 0x1000 to 0x2000 (r-x, max r-x; copy, private, not-reserved)	
 ... from 0x2000 to 0x3000 (rw-, max rw-; copy, private, not-reserved)	
...	
 ... from 0xfe000 to 0xff000 (r--, max rwx; share, private, reserved)	
 ... from 0x100000 to 0x400000 (rw-, max rwx; copy, private, not-reserved) (3 sub-regions)	
...	
(gdb) dump memory dump_100000.bin 0x100000 0x400000	

Copyright Trustwave 2010

Oh !@#$. My Cached Corp. OWA Login

... continued	
(gdb) dump memory dump_100000.bin 0x100000 0x400000	
...	

$ strings dump_100000.bin |grep -B6 -A2 'Authorization: Basic'	
POST /Microsoft-Server-ActiveSync?User=emonti&DeviceId=ApplnnnnNP&DeviceType=iPhone&Cmd=Ping HTTP/1.1	
Host: owa.mycompany.com	
Content-Length: 0	
Ms-Asprotocolversion: 12.1	
User-Agent: Apple-iPhone2C1/801.306	
X-Ms-Policykey: 550504473	
Authorization: Basic bXljb21wYW55LmNvbVxlbW9udGk6bm90ZnVja2luZ2xpa2VseSE=	
Accept: */*	
Accept-Language: en-us	

*	 Alternately	 See:	 h<p://github.com/emonA/gcore_arm	 	
SAll	 working	 out	 minor	 kinks,	 but	 it	 (usually)	 gets	 a	 full	 core-‐dump	 without	 gdb	 	
and	 without	 killing	 the	 target.	 Downside,	 full	 core-‐dumps	 are	 usually	 huge.	

Copyright Trustwave 2010

Targeting iOS Applications

iOS isn’t just for fart apps anymore…

Copyright Trustwave 2010

Pick an “interesting” target in the App Store

I chose “Square” because… well it’s free.
As in free!
… and I the promo video cracked me up

Demo App Backdoor

Copyright Trustwave 2010

Decrypt The Binary for Reversing

Crackulous, xcrack, etc. But how how do they work?

1. Find the app binary on the iDevice
# find /var/mobile/Applications –name SomeApp.app	
/var/mobile/Applications/0578A160-…/SomeApp.app	

2. Get the size of the encrypted code/data section
# otool –l …/0578A…/SomeApp.app/SomeApp |grep –A4 LC_ENCRYPTION_INFO 	
 cmd LC_ENCRYPTION_INFO	
 cmdsize 20	
 cryptoff 4096	
 cryptsize 4096	
 cryptid 1	

3. Load the executable in a debugger (gdb is a cydia package)
# gdb …/SomeApp.app/SomeApp	

See: dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries

Copyright Trustwave 2010

Binary Reversing Prep (continued…)
4. Observe the encrypted section “before” -- garbage instructions:

(gdb) x/3i 0x2000	
0x2000: 	addge 	r4, r7, r4, asr r11	
0x2004: 	bl 	0xfe147a48	
0x2008: 	ldrbcc 	r5, [r4, #3476]	

5. Set a BP to fire after decryption, and let iOS decrypt for us just by running it
(gdb) break *0x2000	
Breakpoint 1 at 0x2000	
(gdb) r	
…	
Breakpoint 1, 0x00002000 in ?? ()	
gdb) x/3i 0x2000	
0x2000: 	ldr 	r0, [sp]	
0x2004: 	add 	r1, sp, #4 	; 0x4	
0x2008: 	add 	r4, r0, #1 	; 0x1	

Copyright Trustwave 2010

Binary Reversing Prep (continued…)
6. Dump the decrypted section to a file based on “cryptsize” from step #2 (4096)

(gdb) dump memory decrypted.bin 0x2000 (0x2000 + 4096)	

7. Merge decrypted.bin back into SomeApp using your favorite hex editor.
• Relative file offset for the encrypted data will be 0x1000 away from the mach
header (aka cryptoff) .

8. Don’t forget to disable “cryptid” so that class-dump and other tools will work on
our fixed up binary. Change Cryptid to 0.

Copyright Trustwave 2010

No More Secrets

Hint:	 find	 the	 LC_ENCRYPTION_INFO(0x21)	 load	 command	 by	 converAng	 	
“otool	 –l”	 output	 back	 to	 32-‐bit	 li<le	 endian	 hex	 and	 searching	 for	 it.	 	

 cmd LC_ENCRYPTION_INFO (21000000h)	
 cmdsize 20 (14000000h)	
 cryptoff 4096 (00100000h)	
 cryptsize 4096 (00100000h)	
 cryptid 1 (00000000h)	

Copyright Trustwave 2010

Still Curious About Apple’s Binary Encryption?

So was I
TIP: Encryption code portions are in the open XNU source

http://opensource.apple.com/source/xnu/xnu-1228.9.59/bsd/kern/mach_loader.c
Code responsible for parsing mach-headers on loading mach or FAT binaries

Copyright Trustwave 2010

Mach Binary Encryption (continued…)

…	

h<p://opensource.apple.com/source/xnu/xnu-‐1228.9.59/bsd/kern/mach_loader.c	

Copyright Trustwave 2010

Mach Binary Encryption (continued…)
http://www.opensource.apple.com/source/xnu/xnu-1228.9.59/osfmk/kern/page_decrypt.h

http://www.opensource.apple.com/source/xnu/xnu-1228.9.59/osfmk/kern/page_decrypt.c

Copyright Trustwave 2010

What’s your point?
For starters… text encryption is an OS X feature also!

MySnowLeopardMac$ nm /mach_kernel |grep text_crypter	
ffffff8000623410 D _text_crypter_create	
ffffff800027cdac T _text_crypter_create_hook_set	

Will we see this used for the Mac App store?

Not the same thing as DSMOS ("Don't Steal Mac OS X”) binary
protection but bears some resemblance to it:
http://www.osxbook.com/book/bonus/chapter7/binaryprotection/

All I’ll say is beyond that is “ongoing research”

Anybody knows more about this stuff, I’d like to buy you some beers.
(extra beers if you are under an Apple NDA and “shouldn’t” talk about it!)	

Copyright Trustwave 2010

But Remember…
DBADB == “Don’t Be A D-Bag”

Stealing	 is	 lame.	 	

Copyright Trustwave 2010

Objective-C Method Hooking

It’s called a “swizzle”

Copyright Trustwave 2010

Examine our “prepared” Binary

Did I mention class-dump?

Copyright Trustwave 2010

Objective-C Method Hook Example
Lets “swizzle” [NSObject -init]

Copyright Trustwave 2010

Objective-C Method Hook Example
Lets “swizzle” [NSObject -init]

Copyright Trustwave 2010

Injecting Our Library

Conventionally, we’d use DYLD_INSERT_LIBRARIES (think LD_PRELOAD)

But MobileSubstrate, is even better (dpkg available from cydia)
http://www.iphonedevwiki.net/index.php/MobileSubstrate

We can associate our injected dylib to a single target

Or many

But, we avoid MSHook* in the lib for use with other injection techniques.

Copyright Trustwave 2010

Other Library Injection Techniques

For things running from “launchd”, we can use a trick from Charlie
Miller’s SMS fuzzing playbook.

Find your /System/Library/LaunchDaemons/*.plist and add
<key>EnvironmentVariables</key>
<dict>
 <key>DYLD_FORCE_FLAT_NAMESPACE</key>
 <string>1</string>
 <key>DYLD_INSERT_LIBRARIES</key>
 <string>/path/to/your.dylib</string>
</dict>

Dino Dai Zovi’s “Machiavellian” bundle-inject’ion also works on iOS.
(porting in progress… stay tuned)

Copyright Trustwave 2010

Conclusions
Lots of security research to be done on iPhones and mobiles in general
•  Objective-C runtime is a ripe area for rootkits and backdoors
•  Mach kernel features are just as intriguing on iOS as they are on OS X
•  In general, if you get good at hacking OS X and you’ll also be getting good at

IOS

Mitigation
•  Conventional wisdom is that Jailbroken devices are more vulnerable.

I think it’s more nuanced than that.

•  My take-away:
Jailbreak your iPhone/iPad/iPod before someone else does it for you!

•  Once jailbroken treat it just like the other computers you own
•  Patches
•  Stripped services
•  Monitoring (periodic md5 filesystem checks are probably even that crazy)

Copyright Trustwave 2010

Conclusions (continued)
We need to see more AV and defense-ware for iOS

•  Don’t expect Apple to facilitate this very much
•  Any reasonable AV solution will fail App Store approval on multiple counts
•  Google Kaspersky’s take on this. (Yet another frustrated iPhone developer)

We need Apple to adopt a better relationship with security.

Reversing Redux: The Binary “star” Exploit

Copyright Trustwave 2010

Reversing Steps

Analyzed the PDF
•  Barebones PDF. Viewer shows one “empty” page
•  Compared PDFs between iOS device/version

− A single zlib deflated font section is the only difference
•  Deflate this section - strings indicate a whole MACH-O dylib in there

someplace
•  Wrote a quick file splitter “extract_payload”
•  Found 3 parts

− CFF Font egg
− Macho_1
− Macho_2

Copyright Trustwave 2010

… continued: egg
Malformed	 Times-‐Roman	 CFF	 Font	

...	
Compiled	 code	 extracted	 from	 dylib	 chunk	 at	 end	 of	 payload:	 	
(aka	 macho_2	 or	 ‘one.dylib’)	

Copyright Trustwave 2010

IOKit Integer Overflow XML Extract

Copyright Trustwave 2010

class-dump on installui.dylib (aka macho_1)

Copyright Trustwave 2010

Wad.bin

What gets downloaded and installed for the jailbroken device?
•  Wad.bin pseudo-code structure

•  XZ’ed tarball contents
−  Stripped down Unix dir structure and CLI programs (bash et al)
− Cydia.app for downloading more packages

