
Home Upload Library Collection Sources Engines Constructors Simulators Utilities Links AV Checkβ
VX Heavens

Infecting Mach-O Files
roy g biv
October 2006

[Back to index]

MachoMan virus

What is a Mach-O file?
Mach-O is the native file format used by OSX. There is a little similarity to Portable Executable
files, but not much. Mach-O files are collections of segments. Each segment can contain one
or more sections, which have different protection attributes.

What does a Mach-O file look like?
Everything about the format is public, most of the format is in loader.h. The file header
structure is called mach_header. Each of the fields is 32-bits large. It has this format:

Offset Field Description
0x00 magic sig (0xfeedface (PowerPC), 0xcefaedfe (Intel))
0x04 cputype 0x12 (PowerPC), 0x07 (Intel)
0x08 cpusubtype specific architecture
0x0c filetype 0x02 if executable
0x10 ncmds number of commands following
0x14 sizeofcmds total size of commands
0x18 flags  

The commands are used for many different purposes, such as describing segments and
sections, initial values of the CPU registers for the main thread, and resolving symbols
(equivalent to imports in PE files).

The load_command structure has this format:

Offset Field Description
0x00 cmd type of command
0x04 cmdsize number of bytes in command (the value here can be larger than the

command data, so this field must be used to reach the next command, do
not rely on the command data)

Interesting commands are LC_SEGMENT (1) and LC_UNIXTHREAD (5). The LC_SEGMENT
command describes a segment of memory. It is equivalent to a section in PE files. The
segment_command structure has this format:

http://vx.org.ua/av.php
http://vx.netlux.org/vx.php?id=tidx
http://vx.netlux.org/vx.php?id=eidx
http://vx.netlux.org/vx.php?id=sidx
http://vx.netlux.org/links.php
http://vx.org.ua/upload.php
http://vx.netlux.org/vl.php
http://vx.netlux.org/lib/
http://vx.netlux.org/vx.php?id=uidx
http://vx.netlux.org/src.php
http://vx.netlux.org/
http://vx.netlux.org/lib/?lang=EN&author=roy%20g%20biv
http://vx.netlux.org/lib/?lang=EN&index=OO#vrg01
http://vx.netlux.org/src.php?info=machoman.zip


Offset Size Field Description
0x00 16 segname name of segment (ignored, just like PE)
0x10 4 vmaddr segmentvirtual address
0x14 4 vmsize segment virtual size
0x18 4 fileoff segment file offset
0x1c 4 filesize segment file size (0 means empty)
0x20 4 maxprot maximum protection attributes (can disallows writable code, for

example, but clearing PROT_WRITE bit)
0x24 4 initprot initial protection attributes (combination of READ, WRITE, EXEC, but

PROT_WRITE requires PROT_READ)
0x28 4 nsects number of sections following
0x2c 4 flags  

A section is a piece of memory within a segment. The section_command structure has this
format:

Offset Size Field Description
0x00 16 sectname name of section
0x10 16 segname name of host segment
0x20 4 addr section virtual address
0x24 4 size section file size
0x28 4 offset section file offset
0x2c 4 align section alignment
0x30 4 reloff relocation data file offset
0x34 4 nreloc relocation data item count
0x38 4 flags  
0x3c 4 reserved1 interpretation depends on flags
0x40 4 reserved2 interpretation depends on flags

The flags are a packed structure, the low 8 bits describe the section type, the top 8 bits
describe the section user attributes, the next 8 bits describe the section system attributes.

How do we infect it?
I thought about this problem for a long time. The problem with the format is that some
structures, like the symbol tables access sections by number, so we can't insert sections or
segments. We could add a section to the end, but that would require possibly moving file data
to make room, and some structures are difficult to parse properly, so that's not a good option. I
thought about a cavity infector, but the only good cavity that I could find was in the
__jump_table section, but the size cannot be altered, because it is used by the symbol loader. I
considered appending to the __LINKEDIT segment, but it is discarded by the loader. I thought
about moving some code from the __text section to the end of the file, and placing myself in
the space, but then I would need to open the file to read it back.

Eventually, I started thinking about it differently. Each file is supposed to start with a
__PAGEZERO segment, which marks the first 0x1000 bytes as not accessible. The file size
there is 0, but I wondered if I could change it and load my code? Amazingly, it is so. All I had to



do was pad the file to a multiple of 4kb first, to avoid a bus error, then append my code. After
that, I set the file offset and size fields, and the protection flags so I can run.

How to get control?
This was a problem, too, for some time. I was using IDA to load the file, but at first I didn't see
anywhere the entrypoint value. It seems that the Ilfak had the same problem, because IDA
assumes that the entrypoint is always the first byte in the __text section. Of course, that's not
true. :)

Introducing LC_UNIXTHREAD
The LC_UNIXTHREAD load command describes the register values for the main thread in the
file. Yes, that includes EIP. By simply changing the value in the EIP field to another value, I
was able to move the entrypoint around, but IDA did not notice, and continued to show the old
one! It's a new type of entrypoint obscuring. ;) Even more interesting was that IDA refuses to
load any segment which contains no sections (like __LINKEDIT and, more importantly,
__PAGEZERO). That means my code is invisible, yet it runs.

The structure is of the thread_command type. It has this format:

Offset Size Field Description
0x00 4 flavor type of data following
0x04 4 count number of dwords following

The interpretation of the thread information depends on the data flavor. We are interested only
in the i386_NEW_THREAD_STATE (1). In that case, it is a i386_thread_state_t structure, and
it has the format:

Offset Size Field
0x00 4 eax
0x04 4 ebx
0x08 4 ecx
0x0c 4 edx
0x10 4 edi
0x14 4 esi
0x18 4 ebp
0x1c 4 esp
0x20 4 ss
0x24 4 eflags
0x28 4 eip
0x2c 4 cs
0x30 4 ds
0x34 4 es
0x38 4 fs
0x3c 4 gs



and then we are done.

Greets to friendly people (A-Z):

Active - Benny - Malum - Obleak - Prototype - Ratter - Ronin - RT Fishel - sars - SPTH - The
Gingerbread Man - Ultras - uNdErX - Vallez - Vecna - VirusBuster - Whitehead

 rgb/defjam oct 2006
 iam_rgb@hotmail.com

[Back to index]

 S1 

http://vx.netlux.org/lib/?lang=EN&index=OO#vrg01
http://validator.w3.org/check?uri=referer

